Multi-view Contrastive Learning Hypergraph Neural Network for Drug-Microbe-Disease Association Prediction

Luotao Liu[†], Feng Huang[†], Xuan Liu, Zhankun Xiong, Menglu Li, Congzhi Song and Wen Zhang^{*}

College of Informatics, Huazhong Agricultural University, Wuhan 430070, China {luotaoliu, fhuang233, lx666, xiongzk, mengluli, song_cz }@webmail.hzau.edu.cn, zhangwen@mail.hzau.edu.cn

IJCAI-2023

Code: https://github.com/Liuluotao/MCHNN

Introduction

There are plenty of computational methods for pair-wise association prediction, such as drug-microbe and microbe-disease associations, but few methods focus on the higher-order triple wise drug-microbe-disease (DMD)

However, the confrmed DMD associations are insuffcient due to the high cost of in vitro screening, which forms a sparse DMD hypergraph and thus brings in suboptimal generalization ability.

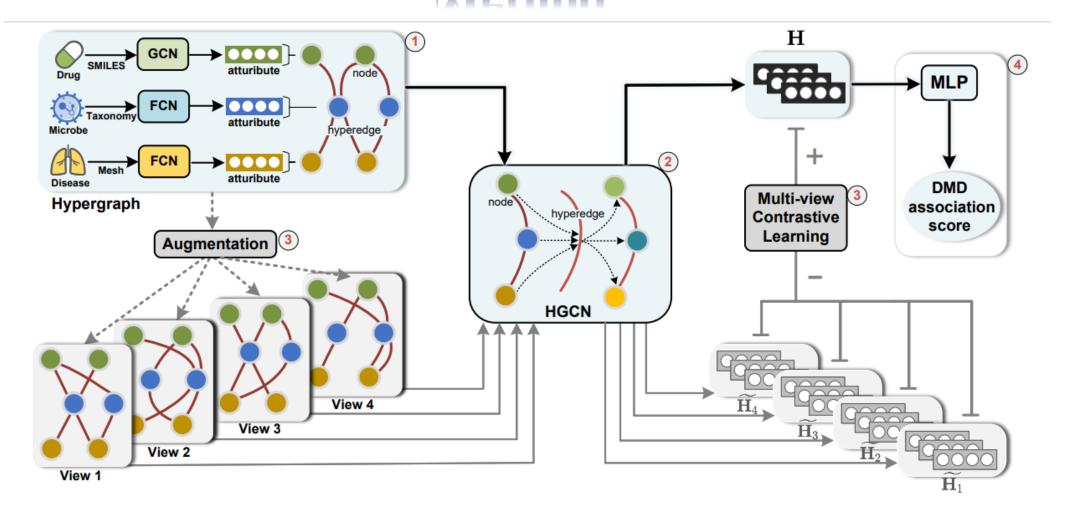
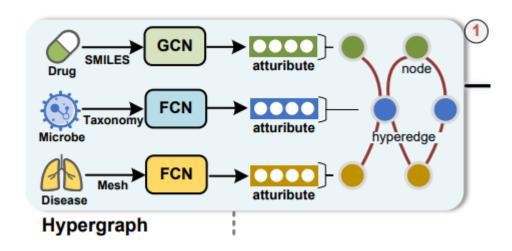


Figure 1: Workflow of MCHNN: ① DMD Hypergraph construction, ② Hypergraph representation Learning, ③ Multi-View Contrastive Learning, ④ Model training.



drug set \mathcal{D} , microbe set \mathcal{M} disease set \mathcal{N} ,

their Cartesian product $\mathcal{S} = \mathcal{D} \times \mathcal{M} \times \mathcal{N}$ is a set of all possible DMD triplets.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}), \quad \mathcal{V} = \mathcal{D} \cup \mathcal{M} \cup \mathcal{N}$$

known DMD associations are represented as hyperedges \mathcal{E}

$$oldsymbol{X} \in \mathbb{R}^{|\mathcal{V}| imes F}$$
 $oldsymbol{Y} \in \mathbb{R}^{|\mathcal{V}| imes |\mathcal{E}|}$ $\mathcal{E} \subset \mathcal{S}$

DMD Hypergraph Construction

$$\mathbf{Y}_{ve} = \begin{cases} 1, & \text{if } v \in e \\ 0, & \text{if } v \notin e \end{cases} \tag{1}$$

$$oldsymbol{X} oldsymbol{X}_{\mathcal{D}} oldsymbol{X}_{\mathcal{M}} oldsymbol{X}_{\mathcal{N}}$$

GIN

$$\boldsymbol{Z}^{(k)} = \text{MLP}^{(k)} \left((\boldsymbol{A} + (1 + \epsilon)\boldsymbol{I}) \, \boldsymbol{Z}^{(k-1)} \right)$$
 (2)

$$oldsymbol{X}_{\mathcal{D}} \ \in ^{|\mathcal{D}| imes F}$$

similarity matrices

$$oldsymbol{S}_{\mathcal{M}} \in \{1,0\}^{|\mathcal{M}| imes |\mathcal{M}|} \qquad oldsymbol{S}_{\mathcal{N}} \in \mathbb{R}^{|\mathcal{N}| imes |\mathcal{N}|}$$

$$oldsymbol{X}_{\mathcal{M}} \in \mathbb{R}^{|\mathcal{M}| \times F} \qquad oldsymbol{X}_{\mathcal{N}} \in \mathbb{R}^{|\mathcal{N}| \times F}$$

fully-connected networks

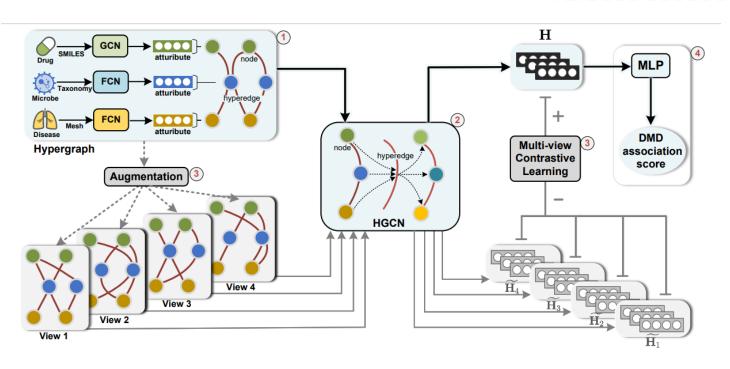


Figure 1: Workflow of MCHNN: 1 DMD Hypergraph construction, 2 Hypergraph representation Learning, 3 Multi-View Contrastive Learning, 4 Model training.

$$m{H} \in \mathbb{R}^{|\mathcal{V}| \times F} \to m{s} \in \mathbb{R}^F$$
 global mean pooling layer $\mathcal{L}_c = -\frac{1}{5|\mathcal{V}|} \left(\sum_{v \in \mathcal{V}} \log \Psi(m{h}_v, m{s}) + \sum_{z=1}^4 \sum_{v \in \mathcal{V}} \log \left(1 - \Psi(\tilde{m{h}}_v^z, m{s}) \right) \right)$ (4)

HGCN

$$\boldsymbol{H}^{(l)} = \sigma \left(\boldsymbol{D}^{-1} \boldsymbol{Y} \boldsymbol{W} \boldsymbol{B}^{-1} \boldsymbol{Y}^{\top} \boldsymbol{H}^{(l-1)} \boldsymbol{\Theta}^{(l-1)} \right)$$
(3)

where $\sigma(\cdot)$ indicate a nonlinear activation function (ReLU), Θ is a learnable weight matrix, $\boldsymbol{H}^{(l)}$ is the node embeddings at the l-th layer and $\boldsymbol{H}^{(0)}$ is initialized with \boldsymbol{X} ; \boldsymbol{D} and \boldsymbol{B} are diagonal matrices respectively corresponding to the sums of rows and columns in \boldsymbol{Y} called degrees of nodes and hyperedges;

View 1 (drug-mode perturbation):
$$(d', m, n)$$

View 2 (microbe-mode perturbation)
$$(d, m', n)$$

View 3 (disease-mode perturbation)
$$(d, m, n')$$

View 4 (random perturbation)
$$(d', m', n')$$

$$\{(\boldsymbol{X}, \tilde{\boldsymbol{Y}}_z)\}_{z=1}^Z \quad \{\tilde{\boldsymbol{H}}_z\}_{z=1}^Z$$

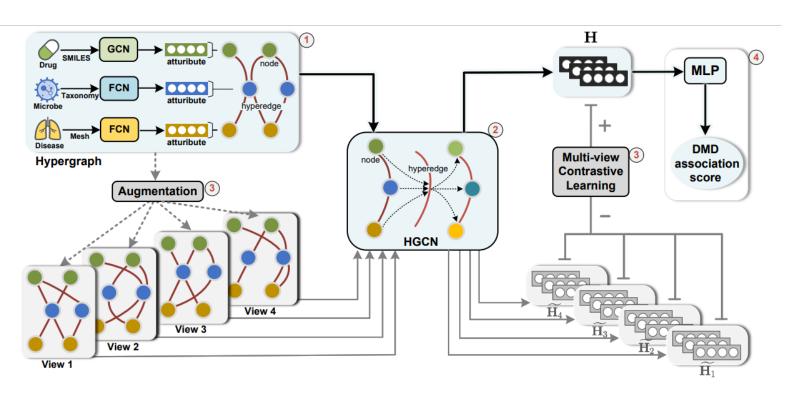


Figure 1: Workflow of MCHNN: ① DMD Hypergraph construction, ② Hypergraph representation Learning, ③ Multi-View Contrastive Learning, ④ Model training.

$$\hat{p} = MLP(\boldsymbol{h}_d \parallel \boldsymbol{h}_m \parallel \boldsymbol{h}_n)$$
 (5)

$$\mathcal{L}_p = -\frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} \left(p_i \log \hat{p}_i + (1 - p_i) \log(1 - \hat{p}_i) \right) \tag{6}$$

$$\mathcal{L} = \alpha \mathcal{L}_p + (1 - \alpha) \mathcal{L}_c \tag{7}$$

Experiments

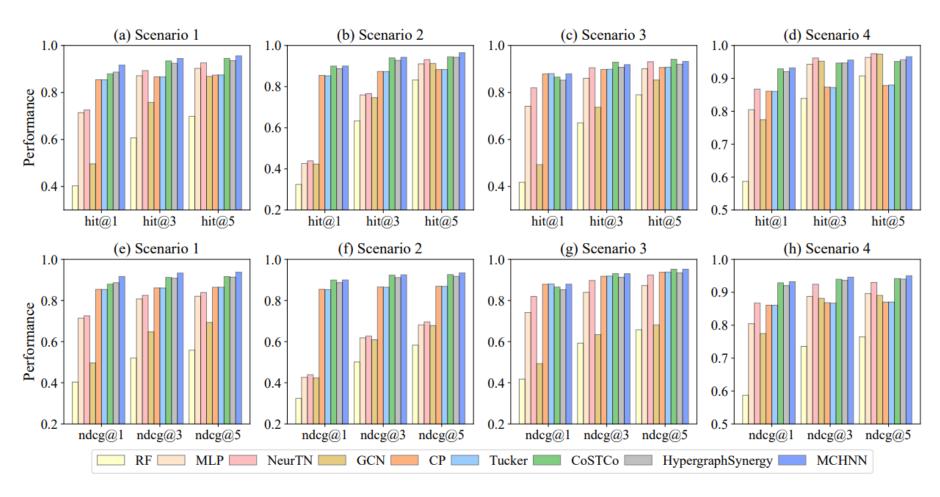


Figure 2: 5-CV performance of MCHNN and baselines in four scenarios in terms of hit@n and ndcg@n.

Experiments

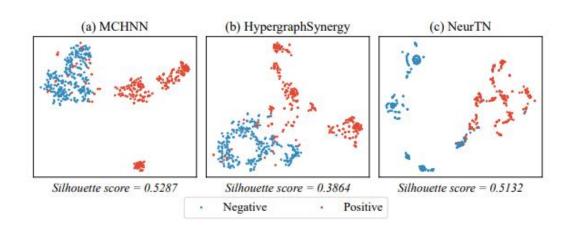


Figure 3: The t-SNE visualization of three models on scenario 4.

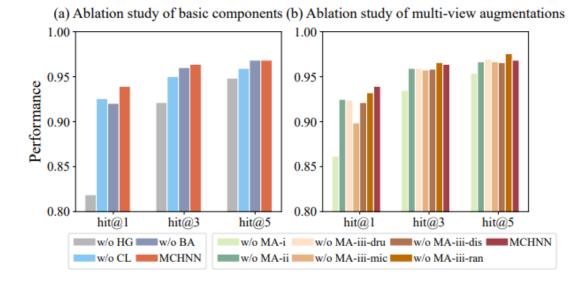


Figure 4: Average values of MCHNN and its variants on four scenarios in ablation study.

Experiments

Methods	MCHNN			w/o CL		
	hits@1	hits@3	hits@5	hits@1	hits@3	hits@5
[0, 50]	0.6736	0.8299	0.8785	0.6840	0.7882	0.8160
$[51, 100]$ $[101, +\infty]$	0.9229 0.9909	0.9840 0.9955	0.9894 1.0000	0.9016 0.9955	0.9335 1.0000	0.9548 1.0000

Table 1: Average values of MCHNN and w/o CL on four scenarios in terms of average degrees of nodes in triplets.

Thanks